Characterisation of a dissipative assembly using structural intensity measurements and energy conservation equation

Jean-Claude Pascala,b,\ast, Xavier Carnielc, Jing-Fang Lid

aLaboratoire d'Acoustique de l'Université du Maine (UMR CNRS 6613), France
bEcole Nationale Supérieure d'Ingénieurs du Mans (ENSIM), Université du Maine, rue Aristote, 72000 Le Mans, France
cCentre Technique des Industries Mécaniques (CETIM), 52 avenue Félix-Louat, BP 80067, 60300 Senlis, France
dVisual Vibro-Acoustics, 51 rue d'Alger, 72000 Le Mans, France

Available online 19 January 2006

Abstract

It is possible to get from complex velocity maps obtained by optical measurements (holographic interferometry, laser doppler vibrometry, etc.) and wavenumber processing, useful quantities to study energy flows in structures such as intensity, power flow, forces, localisation of sources and sinks of energy. In this paper, scanning laser vibrometer measurements on two-plate assembly are used to determine the dissipating power by the joints from the above-mentioned energetic quantities. The average power flow over lines parallel to the junction is computed using the proposed method in order to check a one-dimensional model of power flow distribution along the other dimension. An approximate energy conservation law of flexural vibration which gives good results on beam structures and measurement data are used to determine the dissipation characteristic of joints.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Dissipative assembly; Scanning laser doppler vibrometry; Joints characterization; Structural intensity; Flexural power flow; Vibration energy conservation law; Diffusion equation